
Probability concentration
Yuyuexi

September 23, 2020

Contents
1 Markov process 1

2 Poincaré inequality 1

3 Subgaussian concentration 2

4 Log-Sobolev inequality 2

5 Lipschitz concentration 2

6 Talagrand inequality 3

1 Markov process
Definition (Markov process and Markov semigroup) A (homogeneous) Markov process
(Xt)t∈R+

is a random process that satisfies the Markov property: for every bounded measurable
function f and s, t ∈ R+, there is a bounded measurable function Psf such that

E
[
f (Xt+s) | {Xr}r≤t

]
= (Psf) (Xt)

In particular, {Pt}t∈R+
defines a semigroup of linear operators on Lp(µ), called Markov semigroup.

Definition (generator) The generator L is defined as

L f := lim
t→0

Ptf − f

t

2 Poincaré inequality
Theorem (Poincareé inequality) Let Pt be reversible ergodic Markov semigroup with stationary
measure µ. The following are equivalent given c ≥ 0 :
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1. Varµ[f ] ≤ cE(f, f) for all f

2. ∥Ptf − µf∥L2(µ) ≤ e−t/c∥f − µf∥L2(µ) for all f, t

3. E (Ptf, Ptf) ≤ e−2t/cE(f, f) for all f, t

3 Subgaussian concentration
Theorem (Chernoff bound) Define the log-moment generating function ψ of a random variable
X as ψ(λ) := logE

[
eλ(X−EX)

]
. Then P[X −EX ≥ t] ≤ e−[λt−ψ(λ)] for all t ≥ 0

Definition (subgaussian variable) A random variable is called σ2 -subgaussian if its log-moment
generating function satisfies ψ(λ) ≤ λ2σ2/2 for all λ ∈ R (and the constant σ2 is called the variance
proxy).

4 Log-Sobolev inequality
Theorem (log-Soblev inequality) Let Pt be a Markov semigroup with stationary measure µ.
The following are equivalent:

1. Entµ[f ] ≤ cε(log f, f) for all f

2. Entµ [Ptf ] ≤ e−t/c Entµ[f ] for all f, t

3. E (logPtf, Ptf) ≤ e−t/cE(log f, f) for all f, t if Entµ [Ptf ] → 0 as t→ ∞.

5 Lipschitz concentration
Definition (Wasserstein distance) The Wasserstein distance between probability measures µ, ν ∈
P1(X) :=

{
ρ :

∫
d(x, ·)ρ(dx) <∞

}
is defined as

W1(µ, ν) := sup
f∈Lip(X)

∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ ≤ inf
M∈C(µ,ν)

EM[d(X,Y )]

Definition (Relative entropy) The relative entropy between probability measures ν and µ on any
measurable space is defined as

D(ν∥µ) :=

{
Entµ

[
dν
dµ

]
if ν ≪ µ

∞ otherwise

Theorem (Bobkov-Götze) Let µ ∈ P1(X) be a probability measure on a metric space (X, d).
Then the following are equivalent for X ∼ µ :

1. f(X) is σ2 -subgaussian for every f ∈ Lip(X)
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2. W1(ν, µ) ≤
√

2σ2D(ν∥µ) for all ν

Theorem (Marton) Let φ : R+ → R+ be a convex function, and let wi : Xi×Xi → R+ be positive
weight function. Suppose that for i = 1, . . . , n

inf
M∈C(µi,ν)

φ (EM [wi(X,Y )]) ≤ 2σ2D (ν∥µi) for all ν

Then we have

inf
M∈C(µ1⊗···⊗µn,ν)

n∑
i=1

φ (EM [wi (Xi, Yi)]) ≤ 2σ2D (ν∥µ1 ⊗ · · · ⊗ µn) for all ν

6 Talagrand inequality
Theorem (T1-inequality) Suppose that the probability measures µi on (Xi, di) satisfy the trans-
portation cost (T1) inequality

W1 (µi, ν) ≤
√

2σ2D (ν||µi) for all ν

Then we have

W1 (µ1 ⊗ · · · ⊗ µn, ν) ≤
√
2σ2D (ν | µ1 ⊗ · · · ⊗ µn) for all ν

on (X1 × · · · × Xn, dc), where dc =
∑n
i cidi and

∑n
i c

2
i = 1

Definition (Quadratic Wasserstein metric) The quadratic Wasserstein metric for probability
measures µ, ν on a metric space (X, d) is

W2(µ, ν) := inf
M∈C(µ,ν)

√
E [d(X,Y )2]

Theorem (T2-inequality) Suppose that the probability measures µi on (Xi, di) satisfy the quadratic
transportation cost (T2) inequality

W2 (µi, ν) ≤
√

2σ2D (ν||µi) for all ν

Then we have

W2 (µ1 ⊗ · · · ⊗ µn, ν) ≤
√
2σ2D (ν | µ1 ⊗ · · · ⊗ µn) for all ν

on
(
X1 × · · · × Xn,

[∑n
i=1 d

2
i

]1/2)
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