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1 Markov process

Definition (Markov process and Markov semigroup) A (homogeneous) Markov process
(X,g)te]R+ is a random process that satisfies the Markov property: for every bounded measurable
function f and s,t € Ry, there is a bounded measurable function Psf such that

E [ (Xers) | {X0}i| = (Pof) (X0)

In particular, {Pt}teﬂh defines a semigroup of linear operators on LP(u), called Markov semigroup.
Definition (generator) The generator £ is defined as

2f i tim 2L =S

t—0 t

2 Poincaré inequality

Theorem (Poincareé inequality) Let P; be reversible ergodic Markov semigroup with stationary
measure p. The following are equivalent given ¢ >0 :



1. Var,[f] < cE(f, f) for all f
2N Pf = pf g2y < € VNf = pfllp2quy for all £t

3. E(Puf, Pf) < e B/E(f, f) for all f,t

3 Subgaussian concentration

Theorem (Chernoff bound) Define the log-moment generating function ¢ of a random variable
X as P(\) :=logE [e)‘(X_EX)]. Then P[X — EX >t] < e~ M=vN] for all t >0

Definition (subgaussian variable) A random variable is called o -subgaussian if its log-moment
generating function satisfies ¥(\) < A\202/2 for all A € R (and the constant o2 is called the variance

prozy).

4 Log-Sobolev inequality

Theorem (log-Soblev inequality) Let P, be a Markov semigroup with stationary measure f.
The following are equivalent:

1. Ent,[f] < ce(log f, f) for all f
2. Ent,, [P, f] < e~t/¢Ent,[f] for all f,t
3. E(log Puf, Pf) < e t/¢E(log f, f) for all f,t if Ent, [P f] — 0 as t — oo.

5 Lipschitz concentration

Definition (Wasserstein distance) The Wasserstein distance between probability measures p,v €
Pi(X) :={p: [d(=z,-)p(dx) < oo} is defined as

[ tin- | sav

Definition (Relative entropy) The relative entropy between probability measures v and p on any
measurable space is defined as

< inf Em[d(X,Y))

Wi(p,v) == sup et

FELip(X)

it = { B[] e

otherwise

Theorem (Bobkov-Gotze) Let p € P1(X) be a probability measure on a metric space (X,d).
Then the following are equivalent for X ~ p :

1. f(X) is 02 -subgaussian for every f € Lip(X)



2. Wi(v,p) < /202D(v||p) for all v

Theorem (Marton) Let p : Ry — Ry be a convex function, and let w; : X; x X; — Ry be positive
weight function. Suppose that fori=1,... ,n

inf o (Enm [wi(X,Y)]) <20°D (v|jwi)  for allv
MEC([_Li,U)

Then we have

n

Y e (B [wi (X:,Y)]) €20°D (vl @ - @ ) for all v

inf
MeC(p1 Q- Qpn,,V) P
6 Talagrand inequality

Theorem (T;-inequality) Suppose that the probability measures u; on (X;,d;) satisfy the trans-
portation cost (T1) inequality

Wy (pi,v) < /202D (v||w;)  for all v

Then we have

Wi (1 @ ® pin,v) /20D (v [ pn @+ @ ) for all v

on(Xy x -+ x Xy, d.), where d. =7 ¢;d; and Y ; ¢? =1

1
Definition (Quadratic Wasserstein metric) The quadratic Wasserstein metric for probability
measures [, v on a metric space (X,d) is

Wo(p,v) := Meiél(fu » E[d(X,Y)?]

Theorem (T,-inequality) Suppose that the probability measures p; on (X, d;) satisfy the quadratic
transportation cost (Ty) inequality

Wa (isv) < /202D (Wllms)  for all v

Then we have

Wa (11 ® - @ pn,v) S V202D (v [ 1 @ -+~ @ pn)  for all v

on (X1 x -+ x X, [0, @2]'?)



